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A new technique for simulating liquid drop behavior on the computer is described. 
Sample computations and results are presented for the case of a simple drop oscillation. 
The computing method is based on an extension of the Marker-and-Cell method, and in- 
cludes the effects of surface tension in a way similar in several important respects to that 
of B. J. Daly. The geometry is presently constrained to be axisymmetric. Available 
theory pertinent to the drop oscillation problem (and sufficient to give a reasonably 
definitive check on the model’s accuracy) is reviewed. For small-amplitude oscillations 
(to which the theory applies) the agreement between theory and numerical prediction 
is very good. The predicted characteristics of the large-amplitude oscillation are 
discussed. 

INTRODUCTION 

There are a variety of phenomena, both in nature and in industry, which involve 
the interactions of an assemblage of liquid drops with one another, with other 
surfaces, and perhaps with an atmosphere. Obvious natural examples are the 
growth of raindrops by the coalescence of colliding drop pairs, the unstable 
breakup of large falling drops caused by their interaction with an air stream, and 
the splashing and erosion produced by raindrops impacting on soil. Similar 
examples can be found in various industrial processes. 

While there are some situations in which one can treat liquid drops as being 
rigid spheres (e.g., the raindrop collision efficiency problem), one sees from the 
examples above that there are important cases for which the deformation of the 
drop produces the effect under consideration. It is clear from the difficulties 
inherent in dealing with nonlinear fluid flows involving free surfaces, particularly 
when surface tension is present, that a numerical approach offers the best oppor- 
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tunities for the theoretical study of general drop distortions. In this paper we 
present a numerical technique which has been successfully used for simulating 
liquid drop behavior. To establish the model’s accuracy and applicability we present 
the results of calculations simulating the lowest-order oscillations of a drop, and 
compare those results with available theory. 

BASIC COMPUTING SCHEME 

The basic scheme used here for integrating the equations of fluid motion is that 
of the Marker-and-Cell (MAC) method, developed by the Los Alamos group [I I]. 
It utilizes the full Navier-Stokes equations for an incompressible, viscous fluid, 
and is particularly suitable for problems involving free surfaces. Very briefly, the 
MAC method integrates the finite-difference form of the Navier-Stokes equations 
subject to appropriate boundary conditions. Velocity components and pressure 
are defined over a staggered Eulerian mesh. A Lagrangian system of marker 
particles is defined, and these markers are moved through the grid at interpolated 
local fluid speeds, behaving much like dye particles in acual experiments. As time 
progresses, the positions of these marker particles serve to specify the location of 
the fluid surface, and hence, can define in which computing “cells” the surface 
boundary conditions should be applied. The MAC method is well documented 
elsewhere [6, 11, 12,281, and the reader is referrred to other publications for 
further details. Except as specifically noted, the techniques used here are those of 
the original MAC method. 

The drop calculations made here have been restricted to two-dimensional 
axisymmetric geometry, appropriate to the drop problem. Despite the apparent 
limitations of two dimensions, a variety of realistic drop phenomena can be 
so studied. In addition to the simple oscillations reported here, the dynamics of a 
drop impacting on a wall (equivalent to the collision of equal-size drops along their 
line of centers), and the disruption of a highly electrically stressed drop have been 
successfully simulated. This other work is being reported elsewhere. 

SURFACE-TENSION EFFECTS 

In order to simulate liquid drop behavior one must, of course, account for the 
effects of surface tension. If we let rl and rZ denote the principal radii of curvature 
of the surface of a drop at a given point, then the pressure difference across the 
interface there is given by Laplace’s formula 

P -Po = 4/r, + l/h), 
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where p is the pressure just inside the surface, p,, is the pressure just outside the 
drop (atmospheric pressure, for example), u is the surface tension coefficient, and 
both rI and r2 are reckoned positive when drawn into the drop {for derivation see, 
e.g., Landau and Lifshitz [16]}. As long as we are not concerned with contact-angle 
considerations, then incorporation of the surface pressure condition (1) is the only 
modification necessary for the inclusion of surface-tension effects in fluid flow 
problems. The actual method used here for including this conditions will be 
discussed later. For general surfaces the determination of the two radii of curvature 
would be extremely difficult, but in the present work we deal only with surfaces of 
revolution, and for this case the two radii can be specified relatively simply. 

Let the drop profile shown in Fig. 1 be given by the relation z = z(r). We will 
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FIG. 1. Drop profile showing the two principal radii of curvature. 

consider presently the complications arising from the double-valued nature of 
this function. The curvature in the plane of the figure is given by the usual equation 

l/r, = z”/(l + .z’~)~/~, (2) 

where rl is the distance AC in Fig. 1. The second curvature required is that of the 
trace of the drop surface in that plane perpendicular to both the plane of the 
figure and the tangent plane at the point in question. Since we deal with a figure 
of revolution, it is clear that the distance AB in Fig. 1, where point B lies on the 
z axis, is the required radius r2 . One can easily show that 

l/r2 = z’/r(l + z’~)I/~. (3) 
This curvature is the same as that of a cone tangent to the drop at A, and with 
apex on the z axis. 

#I/11/4-4 
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A complication now arises from the specific geometry of the drop problem: 
In spite of the fact that the surface curvature remains finite everywhere, at the 
drop’s equator the slope, dz/dr, of the profile becomes infinite, and Eqs. (2) and (3) 
cannot be used for numerical computation. In the present work the resolution of 
this difficulty has been simply to switch the role of ordinate and abscissa in the 
vicinity of the drop equator, so that the new slope there, dr/dz, is of order unity. 
While this increases the computer programming complexity, it creates no formal 
difficulty. Daly [5] has utilized the same artifice in his work. An attractive alternative 
to this procedure of interchanging ordinate and abscissa is to define the drop 
profile in parametric form, r = r(s), z = z(s), for then the above-mentioned 
difficulties do not arise. Drop-related calculations employing such a parametric 
formulation have been reported in the literature [2, 261. The present method is 
completely workable, however, and the principal gain from using a parametric 
representation comes from the programming simplifications. 

EVALUATING SURFACE CURVATURES 

We now consider the problem of specifying the surface location with sufficient 
accuracy to evaluate the derivatives involved in calculating the two radii of curva- 
ture from Eqs. (2) and (3). The general approach used in the present study is 
patterned after the work of Daly [5], who applied the technique to a study of the 
two-fluid Rayleigh-Taylor instability. 

In the original MAC calculations, the surface is specified as being a region of 
surface cells, and, as such, is only resolved by the fixed Eulerian mesh. Such 
resolution is, of course, too crude to allow evaluation of curvatures. Daly [5] has 
introduced the idea of using the MAC Lagrangian coordinate system of marker 
particles to describe the surface location with more accuracy. At some initial time 
an ordered sequence of marker particles is laid out along the nominal surface. 
As the flow develops, these surface particles, as we will call them, are moved at the 
local fluid speed, and thereafter mark the position of the surface. The spacing of 
these particles is of some importance, and the present experience in this regard 
will be discussed later. Daly’s procedure then involves determining the actual 
surface curvature from the orientation of an interpolation curve passed through 
the surface particle array. In particular, a cubic spline is employed. This procedure 
not only ensures that the surface curvature will vary smoothly from point to point 
(an important stability consideration), but provides a means for evaluating the 
necessary derivatives anywhere on the nominal surface. 

It should be pointed out that for simple flows (such as the one to be discussed 
here), surface tension is most easily incorporated into a model using purely 
Lagrangian finite difference techniques {see, e.g., Hirt, Cook and Butler [13]}. 
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For flows undergoing large distortion, however, purely Lagrangian techniques 
have a rather limited applicability. The present interest in developing a method 
which can be applied to a study of drop breakup and coalescence has led to the 
more complicated framework presented here. 

The Spline Curve 

The cubic spline fitted to a given array of points consists of sections of cubic 
polynomials joining each adjacent pair of points such that slopes and curvatures 
are continuous at the junctions. In the present case, the given points are taken as 
the locations of the surface particles. Consider an ordered sequence of n points 
(xi, yi) which is monotonic in X. One seeks to determine the spline approximation 
curve, y(x), which has second derivative Mk at point x = xk . We specify that y” 
vary linearly between points xkpl and xlc : 

Y”(X) = ML&G - 4lbcl t M,b - x,-,)/h,], (4) 

where h, = xK - x*-1 . Upon integrating this equation once and requiring that 
the first derivatives be continuous at the junction points one obtains a set of 
equations for the M’s: 

@,/6) Mk--l + Kh,+, + M/31 MI, + Kbc+1)/61 M,+, 
= KYJc+1 - YkY~lc+J - KYk - YK--lmcl (5) 

(see Ref. [27]). This set of n - 1 equations, along with two end conditions is 
sufficient to determine the unknown quantities MI, . A stable explicit algorithm 
for inverting the resulting tridiagonal matrix has been given by Peaceman and 
Rachford [22]. 

Spline Boundary Conditions 

The boundary conditions used by Daly [5] were simply that MO = Ml and 
M,, = Mm-, . In addition, the first and last points were placed so that the spline 
curve intercepted the boundary at the desired angle. The same procedure is ap- 
propriate here at the upper and lower poles of the drop. Thus, the first particle 
(x1, yl) is placed just inside the computing region, a small distance away from the 
z axis. The zeroth particle is then placed at x0 = -x1, and y0 = y1 , in proper 
axisymmetry with the first. [Note that we are here making the correspondence of 
(x, y) with (r, z). When we later deal with a subsequence of particles near the drop 
equator we interchange ordinate and abscissa and instead make the correspondence 
6, Y> and (z, rI.1 
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In the drop problem, unless a parametric formulation is used, it is always neces- 
sary to break the surface array up into three monotonic subsequence of surface 
particles, and compute separately the spline curves for each. Starting from the 
lower pole of the drop, the first subsequence is monotonic increasing in r, the 
second increasing in z, and the third decreasing in r. For each of these subsequences 
at least one end point of the spline does not lie on the z axis, and in this case a 
different boundary condition has been used here. Let (xi , yj) be the end of the first 
subsequence. This break-point is determined by examining the slopes of straight 
line segments joining adjacent surface particles and finding where this slope be- 
comes greater than one. The tangent of the drop profile at (xi, yj) is thus very 
close to unity. Now at such a break-point the condition M,+r = Mj is not a good 
one. For a sphere, for instance, this is just the region where the slope, and hence 
M also, is starting to attain large values, whence the array experiences large particle- 
to-particle changes in M. In this case it is the curvature which should actually 
remain constant. Daly’s method involves making the spline go through the next 
point (xj+r , yj+l) with Mj+l = Mi . We do two different things. First, we constrain 
the spline curve to go through the next two points after the break-point, so that 
the boundary condition is applied to Mj,, but we only use M values up to Mj . 
This transfers the roughness away from the region where curvatures are actually 
evaluated. The calculations of adjacent splines thus overlap, and five particles are 
common to both spline fits, two on either side of the break-point. Second, we use 
a more accurate boundary condition at the end point. We sense that it is desirable 
to keep the curvature constant rather than M constant, and approximate this 
condition by maintaining the first radius of curvature rr constant. Thus, at an 
interior spline end point (x, , y,), where p = j + 2, we have the boundary 
condition 

[y”/(l + y’2)3’212, = [y”/(l + y’2)3’219-1 * (6) 

Now for yz we naturally use M, . But for the slopes we make the approximation 

Y,’ = (Y,,l - Y,-lY(x,+~ - XB-A (7) 

so that we arrive at the boundary condition 

M, = M,-,[(I + ~a”)/(1 + ~~-ajl~‘~, (8) 

where the slopes are evaluated from the centered difference formula (7). Use of the 
condition (8) has given very satisfactory results, and has greatly reduced the 
presence of spurious curvatures in the civinity of spline sub-sequence end points. 

Equations (2) and (3) are appropriate for computing curvatures when dealing 
with a sub-sequence monotonically increasing in r, such as in the present case, 
the lower surface of the drop. Over the upper surface, where the sequence is 
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decreasing in I, the convention that the curvature be positive when the radii are 
drawn into the drop requires that the negative of the values given by (2) and (3) 
be used. 

For a subsequence monotonically increasing in z we use z as the abscissa 
(X = z) and r as the ordinate (y = r). The proper relations are then 

l/r, = +"/(I + r'2)3/2, (9) 

l/r, = I/r(l + r'y!. (10) 

EVALUATION OF SURFACE PRESSURE 

In Daly’s two-fluid calculations, it was convenient to include surface-tension 
effects as a force term in the equations of motion. In the present work, unlike 
Daly’s, explicit boundary conditions on pressure are applied at the drop surface 
during the relaxation solution of an elliptic equation for the pressure field. Thus, 
the natural procedure for including the surface-tension stress is to evaluate the 
pressure for each surface cell from Eq. (1) each time step, and then keep these 
surface boundary values fixed during the relaxation process. Prior to this, of course, 
one must at each time step make new spline fits to the newly positioned array of 
surface markers, arriving at updated M values necessary for evaluating curvatures 
and the spline position. 

Since, in general, the spline curve will not go through the center of a given cell, 
where the pressure is defined, it is necessary to mention where the surface curvature 
is actually evaluated. The procedure used in the calculations reported here is 
relatively simple. The radii of curvature used in (1) are evaluated at the points 
where the spline enters and exits a given cell. The resulting pressures computed for 
these two points are then averaged and applied at the cell center. While this scheme 
appears to be rather arbitrary, it seems to give better results than other similarly 
simple methods that have been tried here. In particular, since adjacent surface 
cells share a common pressure evaluation at their common boundary, use of this 
evaluation scheme tends to keep the surface pressure distribution smooth, an 
important stability consideration. 

It will occasionally happen that a surface cell will just miss being penetrated by 
the spline curve. In this case an alternate routine assigns the cell a surface pressure 
by using the curvature of the spline at its point of closest approach to the cell 
center in question. In stable calculations, such an event will occur only rarely. 

Further details on the actual logic required for the surface pressure evaluation 
(including the complication that one must subdivide the array of surface particles 
and deal with each subsequence separately) are given by Foote [8]. 
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MODIFICATIONS OF THE SURFACE-PRESSURE TREATMENT 

It is recognized that the method of applying the surface-pressure boundary 
condition at the center of the surface cell, rather than at the surface itself, will 
lead to error. Other investigators making MAC calculations have attributed a 
slight waviness on the free surface, with a scale on the order of the mesh interval, 
to the fictitious accelerations which result from this procedure [3, 13, 211. In some 
cases it has been noted that this surface noise will amplify and eventually mask 
the real motion [3]. In the present work, however, it is found that the more or less 
random character of this error, which, of course, depends on the relative size of the 
mesh interval used, does not appear to affect the gross fluid motion. 

Methods have been proposed by Chan and Street [3] and by Nichols and Hirt 
[21] for applying the normal stress condition more accurately, and in particular, 
at the location of the surface rather than the center of the surface cell. Chan and 
Street’s technique of “irregular stars” involves the use of irregular leg lengths in 
the definition of a finite-difference Laplacian operator. The use of these irregular 
stars for appropriate surface cells during the iterative solution of an elliptic, 
equation for pressure seems to offer definite advantages over other methods, 
particularly with regard to accuracy and stability, but its incorporation into 
existing MAC computing codes is not straightforward. In addition, the method 
makes rather extravagant use of computer storage. For example, the only alter- 
native to storing four additional fields (four leg lengths for each cell) would be the 
time consuming development of rather complicated programming logic. 

The method of Nichols and Hirt [21] is more easily adapted to existing MAC 
programs. It involves making a linear estimation of the surface-cell pressure from 
a knowledge of the pressure at the actual surface and the pressure of an adjacent 
full cell. 

If Pa is the pressure at the actual surface (sum of the applied external pressure 
and the contribution from the normal stress condition), then the estimated pressure 
ps at the center of the surface cell is given by Nichols and Hirt as 

Ps =I4 + ((Pa -PdlW, (11) 

where h is the mesh size, p1 is the pressure of the adjacent full cell, and the other 
symbols are defined in Fig. 2. (In this figure the interpolation is assumed to be in 
the r direction. The usual procedure is to extrapolate from a direction as normal 
to the surface as possible. Thus, in the upper and lower regions of the drop one 
extrapolates in the z direction. Near the drop equator one extrapolates in the 
r direction.) As noted by Nichols and Hirt, difficulties arise with the use of (11) 
when the distance D becomes too large or too small. A variant of this method 
which has been tested here gets around this problem: 

Ps = Pa + KPl - I%JlhW. (12) 
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FIG. 2. Definition sketch for quantities appearing in Eqs. (11) and (12). The distances 
rz, and rs correspond to cell centers; r, indicates the position of the actual surface. 
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The stability of a relaxation procedure when used in conjunction with (12) is not 
sensitive to the magnitude of d. Another difficulty with (11) that doesn’t arise with 
(12) occurs when a given surface cell does not have a neighboring full cell from 
which to extrapolate, a situation which can happen occasionally. In this case the 
pressure p1 will itself be extrapolated, and while (12) still converges, it is observed 
here that (11) generaly fails to do so. The fact that (12) is of lower-order accuracy 
than (11) is overridden by its better stability characteristics. 

Test problems conducted here using (12) have noted some improvement over 
parallel calculations with the original MAC method regarding the smoothness of 
the free surface. However, the improvement has not always been substantial, and 
the calculations discussed later in this paper have been made with the original 
method. As will be seen, the results appear to be quite satisfactory. 

SURFACE PARTICLE SPACING 

The spacing of the surface particles proves to be an important consideration 
in making a successful computation. If the particles are too far apart the surface 
is not well resolved, and the results may not be very accurate. If the spacing is too 
close, small fluctuations in particle position will generate faulty curvatures, 
eventually causing amplifying errors. In the present work it has been found 
necessary to keep the particle separation in the range l-2.25 h, where h is the mesh 
interval. It is interesting to note that Daly’s [5] spacing of 0.4 h has not been 
workable in the drop study, and has led to fictitious surface “noise.” The particles 
are initially laid out with a separation of 1.25 h to about 1.5 h, but as a result of 



516 FOOTE 

the surface stretching and shrinking accompanying the drop motion, this separation 
may later change. Following Daly, a procedure is adopted which adds or deletes 
particles from the surface array each time step as necessary to keep the spacing 
with the proper bounds. If the spacing were initially the same as the grid interval, 
which of course would be desirable, there would be no latitude for surface shrinking, 
and undesirable spacings less than h could immediately occur. 

If two particles are found to be too close together, then a test is made to see 
which is closest to its other neighbor, and this is the one deleted. 

When the spacing between two adjacent particles becomes too great then a new 
particle is inserted between. Its position is initially taken to be midway between 
the two. However, this straight profile will almost never fit the general shape of the 
surface. The particle is smoothed to try to bring it into alignment. The smoothing 
consists of fitting a least-squares parabola to five points, namely, the points marking 
the position of the new particle and the positions of the two nearest particles on 
either side. The ordinate of the new particle is then adjusted to lie on the parabola. 
This procedure is also taken from the work of Daly [5]. As the present work has 
progressed, however, close checking has revealed that even after one smoothing 
the M value of the new particle is spurious-indicating that the new particle still 
does not fit the general run of the curve. One further smoothing solves the problem, 
and in the current version of the drop model all added particles are smoothed 
twice before the computations proceed. 

SMOOTHINGTHE SURFACE 

Daly [5] has found it useful to smooth occasionally certain surface particles 
that become irregularly placed as the flow develops. As he points out, the chief 
difficulty involved in treating this problem lies in actually detecting the irregularity. 
Daly’s criterion involves smoothing the kth particle whenever M* exceeds a 
predetermined value. Experience in the present work has been that large particle- 
to particle changes in the M’s, rather than simply large A4 values tend to generate 
surface noise. A smoothing scheme which was thought to be useful in the early 
stages of this work is the following. A given surface particle is smoothed whenever 
its M value differs from the average of its two neighbors by an amount proportional 
to some typical curvature, in the present case l/re , where re is the radius of the 
sphere having the same volume as the drop. This technique is extremely sensitive 
to short-wavelength perturbations of amplitude much smaller than can be detected 
by eye in particle position plots. The smoothing technique employed is the same 
as that discussed earlier in the context of adding particles, and involves a least- 
squares quadratic. 

In fact, as a variety of drop motions have been studied with the present program, 
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it has become apparent that any artificial smoothing of the surface array is detri- 
mental. Even though smoothing in this way frequently reduces the running time 
on the computer, by reducing the amount of time needed for convergence of the 
pressure equation, its use eventually causes short-wavelength surface perturbations 
to develop. While these perturbations do not always amplify, their presence is not 
desirable and the best results have been obtained with no artificial smoothing. 

NUMERICAL STABILITY 

The computational stability of the MAC method has been discussed by various 
authors [3,6, 12,281. Analysis of linearized equations leads to the usual conditions 
on the time increment, St: 

St < 6x/c, (13) 

St < sx2/2v, (14) 

where 6x is the mesh width, c is the maximum fluid speed, and v is the kinematic 
viscosity. The speed of propagation of plane capillary waves is given by 

24 = [27ra/pX]1/Z, (15) 

where h is the wavelength, and p is the fluid density. According to (15), the highest 
wave speed corresponds to the smallest resolvable wavelength, i.e., h = 2Sx.In 
fact, it can be shown that the group velocity U of capillary waves is given by U = 
3~12. In the present work it has been found necessary to satisfy (13) with c taken 
as the 26x group velocity, even though actual fluid speeds are generally an order 
of magnitude smaller. Any violation of this criterion soon leads to amplifying 
surface waves. 

Hirt [12] and Daly and Pracht [6] have discussed a method for analyzing non- 
linear instabilities, that is, computational instabilities resulting from the presence 
of nonlinear terms in the differential equation. The method involves expanding 
each term in the corresponding difference equation in a Taylor series, and retaining 
only the terms of the original differential equation and the resulting diffusion-like 
truncation terms to order St and 6x2. In so doing, one finds it possible to group 
together certain factors of these truncation terms with the kinematic viscosity as 
coefficients of the original diffusion terms (the reader is referred to the original 
papers for details). These coefficients may then be interpreted as an effective 
viscosity coefficient, as used by the difference equations. In order that the difference 
solutions remain stable, this effective viscosity must remain positive, leading to the 
approximate stability condition 

v > 112 6x2 au/ax, (16) 
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where au/ax is the maximum velocity gradient in the direction of flow. This analysis 
gives interesting insights into why trouble should develop in regions of large 
velocity gradients, a fact pointed out by Philips [23], who first discussed the non- 
linear instability phenomenon. Thus, Hirt’s analysis shows how the presence of 
large velocity gradients can lead to truncation errors which tend to amplify local 
anomalies in the flow fleld, rather than smooth them out. Condition (14) also 
shows the difference solutions will be unstable for negative values of V. From 
Phillips viewpoint, however, one sees that the high wave-number components in 
the Fourier representation of a given variable (corresponding to large gradients) 
can be aliased back to lower wave numbers by the nonlinear terms of the finite- 
difference equation, eventually causing a nonphysical increase in kinetic energy 
which can dominate the motion. It is clear that the phenomenon discussed by 
Hirt does not possess this amplifying character, for it can be shown by the methods 
of Lilly [17] that the nonlinear terms of the MAC difference equations conserve 
kinetic energy (except near boundaries). Thus, while the type of staggered grid 
used in the MAC method does not eliminate aliasing errors, its use essentially 
controls nonlinear instabilities. The phenomenon discussed by Hirt is not a 
nonlinear instability in the sense of prior usage of that term, involving unbounded 
error growth. But Hirt’s method is a useful technique for understanding how to 
avoid a type of nonlinear bounded error that can, nevertheless, completely distort 
the flow field and the energy spectrum. 

In the present work it has been necessary to keep v large enough to satisfy (16), 
and St small enough to satisfy (13). Condition (14) is found to be less stringent 
than the other two. As pointed out by Daly and Pracht [6], condition (16) essentiahy 
gives an upper limit on the Reynolds number Re of the problem. Observations in 
the current work have been that when Re becomes too large, surface noise develops 
(see also Refs. [3], [13], [21]), and for sufficiently large Re will amplify and cause 
termination of the calculations. Since, as previously mentioned, the MAC method 
effectively eliminates the unbounded growth of nonlinear instabilities, one suspects 
that this type of error growth is related to the handling of the free surface. Indeed, 
since surface tension drives the motion in the drop problem, and since the surface 
tension stress is calculated from the positions of surface particles, themselves 
located in the very region where cellular velocities are approximated, it is clear 
that stable and accurate calculation including surface-tension effects depends 
strongly on the handling of the free-surface boundary conditions. It is found here 
that the treatment of the original MAC method is workable, but that further 
improvements in this regard would be desirable. 

While the Hirt analysis is useful for understanding how to avoid a certain class 
of observed instabilities, it evidently is not able to predict the onset of instability 
in all cases. For example, Chan and Street [3] performed stable calculations (with 
a modified version of the MAC method) employing zero viscosity, clearly in 
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violation of (16). Their success was attributed to an improved handling of the free 
surface. In particular, they used a heuristic technique for extrapolating fluid 
velocities across the surface, and employed the method of “irregular stars” 
previously mentioned. In future calculations it is intended to evaluate these 
suggested modifications. 

DROP OSCILLATION: AVAILABLE THEORY 

Before proceding to the present numerical calculations, it is appropriate to 
review briefly the main theoretical results pertaining to the drop oscillation problem, 
with a view toward comparing the numerical prediction with theory. 

The nature of the vibrations of a liquid drop about a spheroidal shape was first 
investigated mathematically by Lord Rayleigh [24]. For the purpose of finding 
oscillation frequencies, Rayleigh determined that it was sufficient to consider only 
axisymmetric motion (it can be shown that the three-dimensional modes oscillate 
with the same frequency as the axisymmetric modes), and one may represent the 
shape of the drop in spherical coordinates (r, 0, 4) as 

Y = R + c anPn (COS e), (17) 

where P, is the nth order Legendre polynomial, 0 is the polar angle, R is the radius 
of the unperturbed sphere, and the coefficients a, are functions of time. The 
potential energy, also called surface energy S, , available to drive the oscillation 
is given by 

s, = o(A - A,), (18) 

where 0 is the surface tension coefficient, A is the actual surface area, and A, is the 
constant area of the equivalent sphere. By assuming potential flow and only 
small distortions from a spherical shape, Rayleigh was able to express the kinetic 
and potential energies as functions of the a,‘s. Using Lagrange’s method, for 
which the a,‘s become the generalized coordinates, he then obtained the result 
that a, = b, cos cot, where b, is some amplitude, and w is given by 

co2 = n(n - l)(n + 2)(a/pR3), (19) 

where p is the fluid density. We notice that II = 0, 1 correspond only to rigid 
body motion, and the fundamental mode corresponds to n = 2. 

The four lowest normal modes of vibration are illustrated in Fig. 3. The 
amplitude of oscillation b, is the same for each mode, and is expressed in terms 
of the axial ratio y of the fundamental (the axial ratio, which is useful in describing 
the oblate-prolate fundamental mode, is defined here as the ratio of horizontal 
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FIG. 3. The four lowest normal modes of an oscillating drop, plotted from Eq. (17). 

to vertical axis length). While the Rayleigh theory is strictly valid only for oscilla- 
tions of small amplitude (b < R), the fundamental mode shown in Fig. 3 shows a 
remarkable similarity to actual photographs of oscillating drops. In particular, 
the profile tends to be somewhat blunt rather than drawn out like an actual 
ellipsoid. 

A more general treatment of the drop oscillation problem has been given by 
Landau and Lifshitz [16]. By writing an equivalent of (17) in terms of the surface 
harmonic P,“(cos B)eim+, it is shown that for each n there are 2n + 1 different 
oscillations, corresponding to m = 0, &l, *2,..., in, all having the same fre- 
quency. In fact, for each n there is one axisymmetric mode and only n physically 
distinct three-dimensional modes, since +m and -m lead to the same oscillation. 
Thus, for n = 2 there are three degenerate modes. The axisymmetric oblate- 
prolate mode is shown in Fig. 3. The other two modes have in the past been referred 
to as the transverse-shear mode and the toroidal mode. The transverse-shear mode 
looks something like a 45” wobble about an axis through the poles, and involves 
relative opposing motion between the two hemispheres. The toroidal mode gives 
rise to shapes resembling triaxial ellipsoids, with the major axis oscillating between 
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two perpendicular directions in the equatorial plane, and with no radial movement 
at the poles. 

The toroidal mode has been frequently observed in wind tunnel studies of 
suspended large drops, although to this writer’s knowledge never properly identified 
(see Refs. [l, 7, 9, 18, 201). Apparently large drops (for water, greater than 4 or 
5 mm in diameter, for example), which are greatly flattened on the bottom when 
supported at terminal speed in an air stream, find it easy to oscillate with only 
longitudinal components that do not require vertical pulsations. (It has, in fact, 
been observed that sessile drops can also be excited to oscillate in this mode). The 
“wobbling” mode and the oblate-prolate mode (or “pulsation” mode, as it as been 
called) are commonly observed for all sizes. Since the air flow around a suspended 
drop tends to be axisymmetric, the axisymmetric modes are understandably the 
most frequently observed, and, in any case, are the most easily identified. 

The above analysis does not include the effects of viscosity. For small viscosity 
(V/&P Q 1) Lamb [14, 151 has shown that the only viscous effect is that of 
gradually reducing the amplitude of oscillation. In particular, the period is not 
changed. If b, is the initial amplitude, and b is the amplitude after time t, then 
Lamb’s result can be expressed as 

b = b,e+ (20) 

where p is given by 

p = (n - 1)(2n + l)V/R2. (21) 

The ratio b/b, is plotted in Fig. 4 for the seven lowest modes of oscillation, n = 2 
to n = 8, for water drops (i.e., v = 0.014 cm2 set-‘) of various sizes. The upper- 
most curve is for 12 = 2, and the lower curves correspond to successively higher 
modes. The abscissa is in units of the fundamental period of oscillation for a drop 
of the indicated diameter. Thus, viscosity of magnitude corresponding to that 
of water will reduce the amplitude of oscillation of a 5 mm diameter drop to 10 % 
of its initial value after about 63 oscillations of mode n = 2 (for which the period 
is 32 msec). In contrast, a 100 pm drop will undergo the same damping in only 
nine oscillations (each with period of only 0.1 msec). Note that the higher-order 
modes damp out much faster than does the fundamental. 

Chandrasekhar [4] has also studied the oscillations of a viscous spheroid, and 
has obtained more general results (see also Reid, [25]). However, the conclusions 
for the problem of present interest are the same as those just considered. For fluid 
viscosities characteristic of water, Eq. (20) should be quite accurate for drops as 
small as a few hundred microns in size. 
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FIG. 4. Fractional reduction in amplitude for the oscillation of a viscous spheroid. The upper- 
most curve is for an oscillation of mode n = 2, and the lower curves correspond to successively 
higher modes. The abscissa is in units of the fundamental period of oscillation for a water drop 
of the indicated diameter. 

NUMERICAL RESULTS: A SAMPLE COMPUTATION 

As an example of the applicability and accuracy of the computing method for 
simulating drop phenomena, we present here the results of a study concerned 
with the simplest of all motion of a liquid drop-the oblate-prolate oscillation. 
Studies of the dynamic impact of two drops and of the electrostatic instability 
of a charged drop and a drop in an electric field have also been carried out, and 
will be reported elsewhere. Some of the material may also be found in a dissertation 
by the author (Ref. [S]). The calculations were made on a CDC-6400 computer 
and the plotting done on a Calcomp 665 digital incremental plotter. 

In order to start the fluid dynamic calculations one requires, along with values 
of v and u, specification of the initial flow field and initial drop shape. The 
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calculations presented here have been started from rest with two initial shapes: 
that shape given by the fundamental mode of the Rayleigh theory [the “Rayleigh 
shape,” from Eq. (17)], and that of a true oblate spheroid. Various initial 
amplitudes have been assumed, with axial ratios y up to 1.9. 

An example of the computed results is shown in Fig. 5, where computer-drawn 

t = 3.00 t = 4.00 t = 2.00 

FIG. 5. Computed oscillation of a drop started with the “Rayleigh” shape. 

plots are shown for several times. The drop shape is initially that given by the 
Rayleigh theory, and the pertinent data are as follows: If the drop diameter is 
taken as d = 1.2 mm, then the times given below each plot are in milliseconds, the 
grid interval is h = 3.33 x 10e3 cm, 6t = 8 x lO-‘j set, v = 0.06 cm2 set-l, and 
u = 75 dyn cm-l. The oscillation is started with an axial ratio of 1.7, and the full 
period of oscillation is computed to be 3.97 msec. An enlarged view of the plot 
for t = 1.0 msec is shown in Fig. 6. 

Figures 5 and 6 show three types of plots. The right-hand section through the 
drop shows the configuration of the marker particles, indicated by dots. The 
positions of surface particles are indicated by small crosses. The left-hand section 
shows a velocity vector plot. The velocity vector for each occupied cell is drawn 
simply as a straight line starting from the center of the cell and pointing in the 
appropriate direction. A zero velocity is plotted as a point. At time t = 2.0 msec, 
Fig. 5 shows the pressure distribution as a function of r and z. 
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The drop in Fig. 5 is at rest at time zero. As the pressure gradient forces accelerate 
the fluid, the velocities increase until the drop reaches a spherical shape, near 
t = 0.86 msec (not shown). The velocities then go through a maximum, the drop 
starts to slow down, and comes momentarily to rest in a prolate configuration 
near t = 2.0 msec. At this time the plotted pressure distribution jndicates that 
the highest pressures occur at the poles, and shows that the drop waist is a region 
of relatively low pressure, consistent with the surface curvature. The maximum 
and minimum pressures (assuming unit density) for the normalized plot in Fig. 5 
are 3.9 and 2.0 mbar, respectively. After 2.0 msec, the Aow reverses and the drop 
returns to an oblate configuration. 

FIG. 6. Detail of Fig. 5 at t = 1.0 msec. 

We note at t = 0 in Fig. 5 that the Rayleigh theory, which is not strictly valid 
for such large amplitudes, predicts a slight recurvature at the upper and lower 
poles. While it has been the experience here that the drop tends to return to very 
nearly its initial shape after one oscillation, this recurving feature does not reappear 
and is not physically realistic. 
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ACCURACYOFTHEMETHOD 

It is appropriate to consider now various measures of the method’s accuracy. 

Conservation of Energy 

While total momentum is rigorously conserved by the MAC difference equations 
(in the sense used in Ref. [28], and except in the vicinity of rigid walls, and except 
for the handling of free surfaces), quantities like volume and total energy are not. 
Conservation of these quantities depends on the overall accuracy of the computing 
scheme. The total energy is the sum of the kinetic energy K, and the surface energy 
S, (we exclude for the moment, the effect of viscosity which will tend to increase 
the internal energy at the expense of these other forms). Equation (18) has shown 
how S, is related to the excess surface area of the drop. For the purpose of com- 
puting the drop area, we join adjacent pairs of surface particles with straight lines, 
each line segment thus forming the frustum of a cone in the cylindrical geometry 
of the present problem. Use is made of a simple expression which gives the lateral 
area of each frustum as a function only of the position of the pair of surface 
particles, and these areas can be easily found and summed to give the total. The 
reference area used for the calculation of S, , ideally that of the equivalent sphere, 
is here taken to be the minimum area computed by this procedure during the 
oscillation. 

The kinetic energy is given by 

K, = l/2 j pV2d (volume), (22) 

where V is the fluid speed, and the integral is taken over the whole drop. In evalua- 
tion of (22) it is natural to use the individual computing cell as the small increment 
of volume for the finite-difference summation. It should be noted, though, that if 
surface cells are treated for the purpose of this evaluation as being completely 
full of fluid, values of K, will be computed which are too large. Tests have been 
conducted here which indicate that on the average for this geometry only about 
25 “/, of the surface cell volume should be used for computing K, , and use of this 
fraction has given good results. 

Figure 7 shows the variations of kinetic energy, surface energy, and their sum, 
the total energy, for the same calculations plotted in Fig. 5. The axial ratio of the 
drop y is also shown as a function of time. As predicted by the Rayleigh theory, 
S, and K, behave like sine-squared functions. As the motion develops, the kinetic 
energy rises at the expense of surface energy and reaches a maximum at the 
spherical shape (y = 1.0). The nonzero value of S, after this first quarter cycle results 
from the use of the slightly smaller surface area, near t = 3.1 msec, in determining 
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FIG. 7. Normalized kinetic, surface, and total energy, and axial ratio. 

the surface energy reference level (level of zero potential energy). This change in 
the reference level can easily happen, since there is no guarantee that the drop 
will always pass through a spherical shape. In addition, such a change can result 
from very small changes in the drop volume. In this regard we note here that the 
excess surface energy S, is only about 5 % of the total surface energy aA, for 
y = 1.7 so that changes in drop volume of only a few tenths of a percent can 
account for the sort of variation in the zero surface energy level seen in Fig. 7. 

As the drop enters the prolate configuration (y < 1) the kinetic energy falls, 
going to very nearly zero, the surface energy reaches a maximum, and the drop 
comes to rest. Since K, effectively reaches zero, it is clear that all volume elements 
come to rest at the same time, and hence, that this oscillation is indeed a normal 
mode. As shown also in Fig. 5, the flow then reverses and the same sequence of 
energy transformations is repeated for the second half of the cycle. 

Viscous Dissipation 

The viscous dissipation of kinetic energy causes gradual decreases in the total 
energy and amplitude of oscillation of the drop. In the calculation summarized 
in Fig. 7, 4.5 x 1O-2 ergs, or about 40 ‘A of the initial total energy, is dissipated 
as heat during one oscillation. This amount of energy will raise the drop tempera- 
ture by only a negligible amount, about IO-‘C, so that we can expect no interesting 
thermodynamic consequences from this generation of internal energy. 

Comparison of the viscous dissipation observed in the numerical model with 
that given by Lamb’s theory reveals only rough agreement. In all cases, the theory 
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predicts about 3-8 % more dissipation than takes place in the model. As examples, 
for a calculation with d = 1.2 mm, v = 0.014 cm2 set-l and initial axial ratio 
y = 1.05, the model gives b/b, , the ratio of final to initial amplitude, as 0.96, 
whereas the theory predicts b/b,, = 0.93. For y = 1.9 and v = 0.04 cm2 set-l, the 
model indicates b/b,, = 0.83 and the theory gives 0.79. The worst agreement 
occurs for the case discussed above, with y = 1.7 and v = 0.06 cm2 set-l, the 
largest viscosity used, where model and theory give 0.80 and 0.72, respectively. 
While the theory is not expected to be accurate at large amplitudes, it should be 
quite adequate for y = 1.05, and we conclude that the numerical model provides 
an insufficient amount of viscous dissipation. The zero-shear condition used by 
the MAC method in certain surface cells gives a constant bias in the proper sense 
to explain this problem, but does not appear to be quantitatively adequate. 

Volume Conservation 

The total drop volume has been determined by a Lagrangian technique involving 
summing the volumes of frustums of cones, much like the technique used for 
determining the surface area. The total volume, as measured by this technique, is 
conserved well by the computing scheme. During the calculation of a complete 
drop oscillation, amounting to about 500 computational time steps, the total 
volume is observed to change by no more than 0.8 ‘A. Since the period of oscillation 
varies as the squareroot of the drop volume, negligible error in the computed 
period will result from this small change. 

Asymmetric Character of Large-Amplitude Oscillatiorz 

It is interesting to note in Fig. 7 that the drop spends considerably more time 
in the prolate configuration that in the oblate (57 vs 43 %). This prediction of 14 % 
more time in the prolate shape is consistent with wind tunnel observations of 
oscillating drops made by Montgomery [19]. In the current work this excess time, 
expressed as a percentage, is observed to vary linearly with the amplitude of 
oscillation, expressed in terms of the maximum axial ratio, going to zero at y = 1 .O. 
Thus, at small amplitudes the model predicts symmetric oscillations in agreement 
with theory, and at large amplitudes it predicts asymmetric oscillations in agreement 
with observations. 

Predicted Oscillation Period 

As an additional measure of the accuracy of the numerical method, particularly 
with regard to the gross motion of the drop, we now consider the computed 
period of oblate-prolate oscillation. It is convenient to nondimensionalize the 
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problem so that the results are independent of the particular values assumed for the 
various parameters. Neglecting viscous effects, the important variables are: 
p, u, R, and the period of oscillation 7. In addition to these we must include shape 
parameters L& and d, , the major and minor axes of the drop. From these variables 
we can form the dimensionless quantities: T(~R%-~)-~/~ and d,/d,. The denominator 
of the first quantity is within a factor of z-142 of the Rayleigh period rR , and we 
may equally well write the first group as T/T~ . The second group is simply the 
axial ratio y. Dimensional analysis states that there must be a functional relation 
between the two quantities, and we choose to write it in the form T/T~ =f(r). 
Evaluation of this relationship should give all the information of interest. 

Figure 8 shows (T/T~) - 1, expressed as a percent, versus axial ratio, for 
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FIG. 8. Computed period of oscillation. The crosses and circles mark the start of a given 
calculation. The dots indicate the axial ratio at the end of one oscillation. 

calculations made with both the Rayleigh shape and the elliptical shape. The 
curves approach the theoretical value for y near 1 .O, in agreement with the Rayleigh 
theory. For large axial ratio, the computed period is about 10 % greater than the 
Rayleigh value. In a study of actual water drops, Montgomery [19] also observed 
roughly a 10% excess, so that the present computations are consistent with 
available experiment on this point. (It should be noted that most experiments, 
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e.g., Nelson and Gokhale [20], have not had sufficient accuracy to detect a deviation 
this small. Clearly, future experiments concerned with this problem will need to be 
capable of making measurements accurate to within at least a few percentage 
points). 

Several features of Fig. 8 require comment. It is seen that the curve for the 
elliptical shape is above that for the Rayleigh shape. This results from the fact 
that a given y, the two shapes do not have the same surface area. The elliptical 
shape has a larger area, undergoes a greater amount of distortion, and has a 
longer period of oscillation. 

Although the computations are made with a finite viscosity (equal to 0.014 cm2 
set-1, except as otherwise indicated), an attempt is made to draw the curves in 
Fig. 8 for zero viscosity. As an example, three different viscosities are used at 
y = 1.7 (Rayleigh shape), and the results are extrapolated to zero viscosity. 
Along with the initial axial ratio for each run, plotted as a circle or a cross, the 
axial ratio after the completion of one oscillation is plotted as a dot. As a result of 
the viscous dissipation, the final y is always less than the initial. While viscosity 
tends to slow down fluid motion, we note here that computations using larger 
viscosities predict shorter periods. This is a result of the smaller average axial 
ratio in the large-v case, and the positive slope of the curve in Fig. 8. Because of the 
viscosity-induced change in the amplitude of oscillation during a given calculation, 
we pass the curve through an average of the initial and final y’s 

An independent estimate of the Rayleigh period for an oscillation with amplitude 
corresponding to a maximum axial ratio of 1.7 has been made by Brazier-Smith 
(private communication) using a numerical potential flow model (for a description 
of this model see Brazier-Smith, Jennings and Latham [2]). Brazier-Smith’s value 
and the estimate made here by extrapolating to zero viscosity agree to within 0.1 %. 

On the basis of the results presented here, it is concluded that the numerical 
technique predicts quite realistically the motion of an oscillating drop, and one 
expects that it should be equally applicable to other types of problems involving 
drop distortions. 
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